Efficient code-based one-time signature from automorphism group

Philippe Gaborit, and Julien Schrek

University of Limoges, France

8 mai 2012

Signature with codes

- Quantum 2 ZK-based signature : Stern authentication scheme '93
 - SternDC : very good security reduction
 - 2 very small size of key : $\sim 500b$
 - 6 fast
 - **4** large signature : $\sim 150kb$
- 2 Courtois-Finiasz-Sendrier signature '01
 - security : reasonable but extreme parameters
 - very large key : 8Mb
 - very slow
 - very small size of signature : 80b
- Kabatiansky-Krouk-Smeets scheme '97
 - security : probably sure but unclear practically
 - few-times scheme
 - 6 fast
 - lacktriangledown average size of keys : 200kb, signature length : moderate $\sim 3000 b$

Interest of one-time signature

- ullet Interest of few-times signature o transformation in multi-times via hash-trees
- \rightarrow In that case : signature size in mutli-time = size of key of one time signature
- \rightarrow SternDC signature 150kb \rightarrow one should search for one-time schemes with smaller size of keys.

KKS scheme

Idea : construct a matrix of predefined syndrome matrix that the signer is able to invert

Description

H a random (or QC) $n \times k$ public matrix, G a private $k' \times n$ matrix with only n' non null columns.

A public matrix of syndromes $F = H.G^t$ (F is a $k \times k'$ matrix). $2^{k'}$ = number of possible signature $\rightarrow k' \geq 160$.

Public key: (H,F), Private key: G

Signature:

- m
$$\rightarrow$$
 hash(m)=x $\in F_2^{k\prime}$, signature=xG

Verification:

$$H.(xG)^t = F.x^t + weight(x) \sim \frac{n'}{2}$$

Comments on KKS

Comments on KKS

- clearly linear, one time or more?
- Security? Cayrel-Otmani-Vergnaud '07; BarretoMisoczki '10 (reduction???)
- **3** Intrinsic problem $1: k' \ge 160 \rightarrow \text{large size of key } i$ 200kb.
- Intrinsic problem 2 : the scheme is linear : makes attacks more effective
- **5** The weight of the signature is controlled by the fact that G has weight at most n' (n average n'/2)
- recent attack Otmani-Tillich (PQC 2011) attack all parameters using the fact that the support of the potential errors is small.

New approach with syndrome

Definition (syndrome compatibility)

For G a permutation group on k positions and $H=(I|H_1|H_2|\cdots|H_{r-1})$ a $k\times rk$ parity check matrix of a certain code, we say that the permutation group G is syndrome compatible with H if for any g in G there exists a $k\times k$ matrix L_g such that for any $1\leq i\leq r-1$ we have $H_i.\pi_g=L_g.H_i$. The matrix L_g is called the compatible matrix of g for H.

Proposition

If a permutation group G is syndrome compatible with H then for any x in F_2^n and any $g \in G$:

$$H.(x.\Pi_g)^t = L_g.(H.x^t).$$

Example

Example

Group G of circular permutations of length k. This group is syndrome compatible with a $k \times 2k$ matrix $H = (I|H_1) - H_1$ a random circular matrix.

Circular permutations commute with cyclic matrices we get $L_g = \pi_g^{-1}$.

Idea: from one given syndrome that one is able to invert, one is able to construct several syndrome also invertible (in that case by permutation).

Key generation algorithm for the one-time signature algorithm

• **Public data** A permutation group *G* syndrome compatible with a parity check matrix *H*.

Key generation

Private key : $x_1, x_2, ..., x_l$ random words of weight close to t.

Public key: the associated syndromes $s_i = H.x_i^t$.

One-time signature algorithm with syndrome compatibility

Entry: m a message to sign.

Signature

- Pick j a random element between 1 and 2^s .
- ② To any message m one associates through the hash function h(m||i), I elements $a_1, a_2, ..., a_l$ with $1 \le a_i \le |G|$.
- **3** Compute the word $sign = \sum_{i=1}^{l} x_i . \Pi_{\phi(a_i)}$.
- If weight(sign) > w or if the number of common coordinates between x_i . $\Pi_{\phi(a_i)}$ and sign is greater than t, return to 1.
- **o** Output the signature (sign, j).

Verification

- Compute the a_i from m and j
- **②** Verify that : $H.sign^t = \sum_{i=1}^{I} L_{\phi(a_i)} s_i$ and that $weight(sign) \leq w$.

Démonstration.

The verification works since for any i,

$$H.(x_i.\Pi_{\phi(a_i)})^t = L_{\phi(a_i)}(H.x_i^t) = L_{\phi(a_i)}.s_i.$$

Quadratic double circulant codes

There exist special matrices such that the permutation which acts is large :

$$B_p=(U_p|V_p)=egin{pmatrix} 0&0\cdots0&1&1\cdots1\ \hline 1&&0&\ dots&I&dots&M_p\ \hline 1&&0&\end{pmatrix}$$

 M_p : circulant matrix of quadratic residues.

Proposition

The group $PSL_2(p)$ of order $\frac{(p-1)p(p+1)}{2}$ is syndrome compatible with the matrix B_p .

Security

Security arguments:

- lacktriangled no linearity, the '1' of the secret keys can be in any column ightarrow resistance to Otmani-Tillich attack
- 2 one does not know how to decode this family of code
- when a signature is given, there is always a part of each x_i coordinates which vanishes, an attacker will always have to recover them, as soon as this number is bigger than 30 it becomes very hard.

Parameters

- Quasi-cyclic scheme : G=cyclic shifts of length k. Take k = 6007, r = 3, l = 12, weight of $x_i = 260$, upper weight of signature w=2690, number of common bits t < 260 40 = 220. public key=72kb, signature :18000b.
- Quadratic double circulant codes : $G = PSL_2(p)$. Take p = 3413, l = 5, weight of $x_i = 338$, upper weight of signature=1385. number of common bits t < 338 58 = 280. Public key :18kb,signature size :6800b.

Conclusion

Efficient scheme which can be used with hash-trees to obtain 2^{20} possible signature of size 28kb. Security probably better than KKS because of non-linearity, but relying on a specific class of codes: the Quadratic Residue codes, but not decodable for more than 40 years.