Code-Based Cryptography Workshop 2012
9 — 11 May 2012, Lyngby, Denmark

On the Design of Code-Based Signatures

Ayoub Otmani

ayoub.otmani@unicaen.fr

GREYCE®

Outline

1. Fiat-Shamir paradigm

2. Hash-and-Sign paradigm

3. “Lossy Source Coding" Signatures (joint work with J.P. Tillich)

About this Lecture ...

> Focus on “classical” signatures
e Authentication
o Integrity

e Non-repudiation

> “Sophisticated” signatures are not treated:

Ring signature, threshold ring signature, blind signature, undeniable signature, ...

Signature Scheme

Definition. A signature scheme is given by three algorithms:

> (sk, pk) «— KeyGen(A) where X is a security parameter
> o «— Sign(sk,m) where m € {0,1}*

> b <— Verify(pk,m, o) where b € {accept,reject} and such that:

Verify (pk, m, Sign(sk, m)) — accept

Security Model Terminology

> Forger = Attacker

> Forger's goal
e Universal Forgery (key-recovery, ...)

e [xistential Forgery

> Forger's means
e /No-message
e Known message

e (Chosen message

|. Fiat-Shamir Paradigm

Fiat-Shamir Paradigm (’86)

> Generic method for deriving a signature scheme from any 3-pass
identification scheme

e Replacing Verifier's action’s by a hash function A

e Secure if the identification scheme is secure against impersonation
(Abdalla-An-Bellare-Namprempre '02)

> Code-based identification scheme (zero-knowledge protocol)
e Stern ('93)
e Veron ('96)

3-Pass ldentification Scheme

P

L.

(sk, pk) < KeyGen(\)

a=Commit (sk,nonce)

v

b=Challenge(A,nonce)

A

c=Response(sk,a,b)

~

Verify(pk,a,b, c)

Verify (pk, a, b, c) — accept

if

’

\

a = Commit(sk,nonce)
b = Challenge()\)

¢ = Response(sk,a, b)

Fiat-Shamir Paradigm

> Signature o is computed by means of the steps:
1. a = Commit(sk,nonce)
2. b= h(a,m)
3. ¢ = Response(sk,a,b)
4. 0 = (a,c)
> Verification is done by computing b = h(a, m) and checking:

Verify(pk,a,b’,c) = accept

> Efficiency with Stern’s protocol:
e Fast operations
e Large signatures O(nlogn) bits

e Large keys O(n?) (fixed rate)

Il. Hash-and-Sign Paradigm

Introduction

> Deriving a signature scheme from a public-key encryption (Dsk,Epk)

> For efficiency, m should be a fixed length bit-string

~+ Signing a hash value h(m)
> Signature of m is 0 = Dgy (h(m))

> Verification of (m,¢’) checks if:

pk(U/) = h(m)

> Random Oracle Model (ROM) ~~ h is a random function

Niederreiter Cryptosystem

> Public key: Parity-check matrix H of a binary Goppa code of length n and
dimension k

> Secret Key: t-correcting algorithm 1)
> Encryption: = ~~ y = Hx! with x of weight ¢

> Decryption: compute ¥ (y) and recover x

Assumption. £k = n — mt ~ H is a mt X n matrix

Signing with Niederreiter Scheme

> ROM implies to perform complete decoding

> But probability that a randomly drawn vector in {0, 1}" is at distance ¢ from a
codeword

ﬁ>ﬁgawthastobesmall

> Courtois-Finiasz-Sendrier ('01) proposed a method for producing Niederreiter
signatures for any hash value:

e Modifying m until it lies within distance ¢ from a codeword
e Efficiency implies to take small ¢ (¢t < 12)

e Security implies to take large n (n > 16)

3. Repeat

4. 1 =1+ 1;

5. s; = h(s,1);
6. z =YP(s;);
7. until z # 0;

8. Return o = (z,1);

CFS Scheme

CFS Scheme

Verify(m, (z,4), H,t)

1. s =h(m);

2. s; = h(s,1)

3. If (si = Hz! and wt(z) = t) then
4. Return accept;

5. else

0. Return reject;

Performances (80-bit)

Performances with n = 2™ and k. = n — mt

Signature Verification Length Key size (bits)

(m,t) t't*m? t2m tm + log, t tm2m
(21’ 10) 241.6 211.0 213.3 228.7
(19’ 11) 244.9 211.1 212 .4 226.7

(15,12) 2477 2110 183.5 2224

CFS Scheme - Alternative Way

> Decoding any syndrome by increasing the number of errors t ~~ t 4+ 0 where

n
> 2mt
(+£5)

> These extra d errors found through an exhaustive search

~> Signing time increased by (?)

> Real gain when (Z) < t! ~ generally 6 <2

Security

> Key-Recovery Attack
e Recovering the support and the Goppa polynomial

e Best attack performs an exhaustive search on polynomials of degree t and
applies Sendrier's SSA algorithm

e Time complexity O(2™*") for polynomials with coefficients in Fom

> Existential Forgery under No-Message Attack

e Syndrome Decoding Problem

> Existential Forgery under Chosen Message Attack

e "“One-out-of-many Syndrome” Decoding Problem

Existential Forgery - Algorithmic Problems

Definition. (Syndrome Decoding Problem)
e Input. H, a syndrome s and weight ¢

e Output. word e of weight < t such that He! = s

Definition. (“One-out-of-many Syndrome” Decoding Problem)
e Input. H, a list L of syndromes and weight ¢

e Output. word e of weight < ¢ and a syndrome s in L such that He! = s

Existing Approaches

> Syndrome Decoding Problem

e Information Set Decoding (ISD) algoritm ~» Time complexity O (th/2>

> “One-out-of-many Syndrome” Decoding Problem (Sendrier '11)
e Johansson and Jonsson's algorithm ~~ Time complexity O (2”“/2)

e Bleinchebacher’'s Attack ~~ Time complexity O (th/g)

Bleinchebacher’s Attack - Preliminaries

> Based on the Generalized Birthday Paradox Problem

e Input. f : FE—{0,1}"and ¢ >1

¢
e Output. Finding z1,...,2z¢ in E such that @f(a:@) =0
i=1

> Birthday Paradox O (25)

> Wagner ('02) showed that when ¢ = 4 then time/memory complexity O(27/3)

Bleinchebacher’s Attack

> Searching for words ey, es, e3 of weight t/3 and h(m) such that

He! + Hei + He: + h(m) =0

1. Build 3 lists Lo, Ly, Lo of (t73) syndromes of words of weight ¢/3

2. New list Lj, from Lg into L; by XORing and keeping the resulting syndromes
whose first mt/3 positions are zero

3. Build one (virtual) list L3 of 2™%/3 target hash values

4. Merge Ly and L3 into L} by XORing and keeping the resulting syndromes
whose first mt/3 positions are zero

5. Search for a collision between L{, and L) over the last 2mt/3 bits

Remark.

> At least one solution if (t73) > omt/3

> Time/Memory is about O(2™%/3)

Parallel CFS (Finiasz '10)
> Reparation of CFS

> Sign a message m twice (or ¢ times) by means of two (or) different hash
functions hy and ho (or ..., h;)

> For avoiding (trivial) attacks, the two signatures has to be related ~~ signing
with second version of CFS

Finding e; and e, of weight at most ¢ + d such that

Hel = hi(m) and Hel = hy(m)

> Time/memory complexity Bleinchebacher's attack becomes O(22/3)

m t 1 | Keysize Cost Size

18 9 3| 5.0MB 2200 288

19 9 2]10.7MB 2195 206

20 8 3 |20.0MB 2169 294
80-bit security/d = 2

Quasi-Dyadic CFS Signature

> CFS-like scheme by Barreto-Cayrel-Misoczki-Niebhur ('11)
> Based on binary Quasi-dyadic Goppa codes (Cauchy matrices)

> Smaller keys than CFS scheme (reduction by a factor t)

Cauchy Matrix

> 2z = (20,...,%-1) € Fim
> X = (2o, ..., Tn_1) € Fim with x; # 2;

Definition. C(z, x) is Cauchy matrix if

L L)

20 — Lo 20 — ITp—1

C(z,x) af

1 1
\ Zt—1 — X0 Zt—1 — Tn—-1)

Proposition. The code defined by the parity-check C(z, x) is a Goppa code
t—1

whose polynomial is v(z) = H(z —)
i=0

Dyadic Matrix

Definition.

> n = 2¢ for some integer £ > 1

> h = (ho, .. -ahn—l) from FZL

> A(h) is called a dyadic matrix

Proposition. (Misoczki-Barreto '09)
> A(h) is a Cauchy matrix if and only if [F, is of characteristic 2 and
1 1 1 1

hig; i i i ho

> Furthermore, for any 0 € I, let z; def 1/h; + 60 and x; def 1/hj +1/ho+ 06

A(h)=C(z,x)

Quasi-Dyadic CFS - Key Generation

> Choose t and let A\ be the smallest integer such that ¢ < 2%
N (Sk,pk) — (fv G)

> G is a binary k x n generator matrix with n = ng2* and f € F%, such that:

Gfl =0

> f is “almost” the first row of a Dyadic Cauchy matrix

e “Inside-Block” equations: 0 <a<ng—1and 0<14,7 < 24 — 1

1 1 n 1 n 1
fa2>‘@j fa2>‘

fa2>‘—}—i@j fa?‘@z’

e "Between-Block” equations: 0 <a<ng—1land 0<1: < 2A — 1
1 N 1 N 1
fa2>‘—|—z’ fa2>‘ fz fO

Algebraic Attack - Faugere -Najahi-O-Perret-Tillich ('12)
Fact.
> G = (I; ‘ R) ~ n —k =mt “free” variables

> “Inside-Block” relations imply that f; with 0 < i < 2* — 1 is solely
determined by fo, f1, for. ... foros

> One f; can be fixed to an arbitrary value ~ fj

Assumption. f1, fa2...., for—1 are known ~» mt — 2* “free” variables

1 1
0<i<22—1: K, ¥4
fz’ fO

Algebraic Attack

> “‘Between-Block” equations become quadratic equations

K faox faoryi T Jaoryi + Jaor =0

> Number of quadratic equations: (2% — 1) (2% —1)
> Quasi-Dyadic CFS parameters are such that:
o <12~)A<H4

o nis large with n < 2™ — 22

~» Number of equations > number of variables

Linearization Technique

> Each product f; f; is replaced by a new variable z; ;

mt—2>‘—|—2>

~~ Total number of new variables (5

> At least one solution to the linearized system if:
n mt — 2* + 2
o 1) M 1) >
(e -v= (")

> All the proposed parameters satisfy this condition

Example.
o t=8~~»m=>13
o t=10~m > 13

o t=12~m > 14

Complexity of the Attack

> Exhaustive search for determining each K; ~~» O (2””)

> Linear algebra O ((mt)2°") where 2 < w < 3

(m,t)! | Exhaustive search (A =4) | Linear algebra (w = 2.376)
(21, 10) 284 234
(19, 11) 276 034
(15,12) 200 233

1 80-bit security

> Open issue. Improving the exhaustive search part (still in progress)

Signing without Decoding (Kabatianskii-Krouk-Smeets '97)

> Possible if one is able to find:
e Signing function X : m —— o of weight ¢

e Verification function y such that y(m) = Ho'

> It would allow to sign with random linear codes

> KKS proposed linear maps for > and y

Y:m+— mG
, T
X :m+— Fm
Assumption. GG generates a linear code whose codewords v are such that:

t1 < wt (’U) < 1o

KKS Scheme - Key Generation

> Security parameter ~~ 9, k, n, v, N suchthat k <n <r< N and 0 < K g

> Pick at random
e k xn matrix G
e JC{l,...,N} of cardinality n
e 1 X N matrix H
> Compute 7 x k matrix F & H(J)G*
def T def M

DSett1:§—(5andt2:§—|—5

sk = (J, G) and pk: (H,F,tl,tg)

KKS Scheme

> o + Sign(m): Compute o of {1,0}" such that:

oJ = mG and O[1...N]\J =0

> Verify(m, o)
Ho!' = Fm!' and t1 < Wt(O’) < to

Preliminary Observations

Notation.

o« 7 {Valid KKS message/signature (m,a)}

- tic {c e {0, 1}k+N . (F ‘ H)cT _ o}

Fact.

1. . is a linear subspace of Gpypiic because of Fm! = Ho?'

2. % is of dimension k

Security of KKS Scheme

1. Basis of . ~~» universal forgery

KKS scheme is a /-time signature scheme with ¢ < k

14

2. If o1,...,00 are ¢ signatures then U support(o;) C J
i=0

Proposition. o4, ...,0, are codewords of weight of ¢ drawn uniformly and

(-3

Remark. ¢ ~ 5 n(l — ?) positions of J are known

independently

14

U support(o;)

1=0

E

Corollary. KKS is one-time signature

“Noisy” KKS (Barreto-Misoczki-Simplicio '11)
Assumption. h ispublic hash function

> (o,v) < Sign(m)
e Pick at random e € {0, 1}¥ such that wt(e) =n
e Compute v & h(m, Hel)
e Compute y € {0,1} such that:
y;=vG and yp Npg =0

def

> Verify(v, o) checks whether

h(m,Ho! + Fv') = v and wt(o) < 2n

Further Observations

Fact.

L. Spt1. kenNp\g = 10}

2. .y is a linear code of dimension k containing low-weight words ~ n /2 with

n/2 << N+k

Corollary.

> Recovering . by applying algorithms searching for low-weight codewords

> F = H(J)GT ~> Gpublic IS Not a random code

Universal Forgery under No-Message Attack (O-Tillich '11)

(F‘H)wj/: Secret
> Dumer’s ISD algorithm: ¢, p with p very small

e Random I C {1,..., N + k} of cardinality k + K + /¢

e Outputs x of weight ~ n/2 such that x; is of weight 2p

> Analysis shows that the attack performs better when
e IC{k+1,....,N+kj}
e Rates of . and Gpupliic are close

e n Is small

> Bootstrapping Second codeword y is found more easily from x
e Take atrandom I C {k+1,...,N + k} \ support(x)

Open issue. Finding “good” parameters immune against this attack

Instead of Correcting?

> “Hash-and-Sign" Paradigm considers h(m) as a“noisy” version of signature

~+ h(m) should not be changed

> CFS scheme simulates complete decoding

~» h(m) has to be changed

> With J.P. Tillich we propose to rephrase the problem in the framework of
Rate-Distortion Theory (also called lossy source coding)

lll. “Lossy Source Coding” Signatures

Rate-Distorsion Theory

> Aiming at representing/estimating/quantizing a source (= random variable
X (w)) taking infinite numbers of values by means of a finite number N of values

X(w) € X ~ R(X) < {X(wl), . ,X(wN)}

Example.
e Representation of real numbers with a fixed number of bits

e Lossy-data compression
> Representation cannot be done exactly ~~ maximum distorsion D

Ve : dist(f((w),X(w)) <D

> Choosing N optimal values

X (w) ~> Find the closest point in R(X)

Polar Codes (Arikan '07)

> Length N = 2"

> Encoding based on Fast Fourier Transform architecture

a (D a+b
b ® b

> Encoding/Decoding can be made in O(/N log N) operations

> Capacity-achieving codes for any binary memoryless channel

> Optimal for lossy source coding of a binary symetric source (Korada '10)

Encoding with Polar Codes (I)

Example. n =3

& 6D 6P
°
®
S»)
SP)

D
®
®
®
®

> Which code do we get?

Encoding with Polar Codes (1)

Extended Hamming code [8, 4, 4] defined by the generator matrix:

(111100 0 0)

1 100 110 0
G —

1 0101010

1111111

~+ Which entries have to be kept zero?

“Polarization” Phenomenon

09 0684~ 0.4379~ 0.25
L/ L%
0.467 T 0.684 ~ Q4379~ 0.25
L/ L%
0.346 mo.191. 04379~ 0.25
NU%
0.037 T 0-191. 04379~ (25
NU%
0228 O 121~ 0-0625. 0.25
L/
0.015 T 0.121 0-0625. 0.25
L/
0.008 /- 0.004 o 0.0625 ® 0.05
0.0000016 T 0-004. 0-0625. 0.25

> General rule For a code of length N and dimension K then set to 0 the N — K
worst positions

> Entries set to zero are called “frozen” (red)

Using Polar Codes in Cryptography

> Adding diversity

e Changing the alphabet from binary to GF(4) = {0, 1, w, w?*}

e Not considering only one transform but a set of transforms

w 1

1 w)
e Randomly picking 2"~ transforms at each level i of {1,...,n}

> Expanding from GF'(4) to GF(2) ~~» binary linear code of length and
dimension twice as large

> Masking the structure like McEliece

Estimating Minimum Distance

Proposition. Minimum distance of a polar code with information set containing
only integers whose binary representation does not contains less than £ zeros is at

least 2¢.

> Proposed parameters (over GF(4))
e N =4,096, K =1,255, £ =7 ~» minimum distance > 128

e 80-bit security (Peters’ g-ary version of ISD)

Binary Distorsion Values (4,000,000 tests)

50 000 4
40 000 -
30 000
20 000 -

10 000

T I T —
2000 2100 2200 2300

I

Maximum distorsion < 2, 268

Performances

> Binary code of length 8,182 and dimension 2,510
> Maximum distorsion < 2,268 ~~ 1400-bit security (ISD for binary codes)
> Average time for one signature: ~ 4ms

> Key size: 6.5 Mbyte

