
Code-Based Cryptography Workshop 2012

9 – 11 May 2012, Lyngby, Denmark

On the Design of Code-Based Signatures

Ayoub Otmani

ayoub.otmani@unicaen.fr

Outline

1. Fiat-Shamir paradigm

2. Hash-and-Sign paradigm

3. “Lossy Source Coding” Signatures (joint work with J.P. Tillich)

About this Lecture . . .

⊲ Focus on “classical” signatures

• Authentication

• Integrity

• Non-repudiation

⊲ “Sophisticated” signatures are not treated:

Ring signature, threshold ring signature, blind signature, undeniable signature, . . .

Signature Scheme

Definition. A signature scheme is given by three algorithms:

⊲ (sk, pk)←− KeyGen(λ) where λ is a security parameter

⊲ σ ←− Sign(sk,m) where m ∈ {0, 1}∗

⊲ b←− Verify(pk,m, σ) where b ∈ {accept, reject} and such that:

Verify

(

pk,m, Sign(sk,m)
)

= accept

Security Model Terminology

⊲ Forger = Attacker

⊲ Forger’s goal

• Universal Forgery (key-recovery, . . .)

• Existential Forgery

⊲ Forger’s means

• No-message

• Known message

• Chosen message

I. Fiat-Shamir Paradigm

Fiat-Shamir Paradigm (’86)

⊲ Generic method for deriving a signature scheme from any 3-pass

identification scheme

• Replacing Verifier’s action’s by a hash function h

• Secure if the identification scheme is secure against impersonation

(Abdalla-An-Bellare-Namprempre ’02)

⊲ Code-based identification scheme (zero-knowledge protocol)

• Stern (’93)

• Veron (’96)

3-Pass Identification Scheme

P V

1. (sk, pk)← KeyGen(λ)

2.
a=Commit(sk,nonce)

−−−−−−−−−−−−−−−−−−−−→

3.
b=Challenge(λ,nonce)

←−−−−−−−−−−−−−−−−−−−−

4.
c=Response(sk,a,b)

−−−−−−−−−−−−−−−−−−−−→

5. Verify(pk, a, b, c)

Verify
(

pk, a, b, c
)

= accept if















a = Commit(sk, nonce)

b = Challenge(λ)

c = Response(sk, a, b)

Fiat-Shamir Paradigm

⊲ Signature σ is computed by means of the steps:

1. a = Commit(sk, nonce)

2. b = h(a,m)

3. c = Response(sk, a, b)

4. σ = (a, c)

⊲ Verification is done by computing b′ = h(a,m) and checking:

Verify
(

pk, a, b′, c
)

= accept

⊲ Efficiency with Stern’s protocol:

• Fast operations

• Large signatures O(n logn) bits

• Large keys O(n2) (fixed rate)

II. Hash-and-Sign Paradigm

Introduction

⊲ Deriving a signature scheme from a public-key encryption
(

Dsk, Epk

)

⊲ For efficiency, m should be a fixed length bit-string

 Signing a hash value h(m)

⊲ Signature of m is σ = Dsk

(

h(m)
)

⊲ Verification of (m, σ′) checks if:

Epk(σ
′) = h(m)

⊲ Random Oracle Model (ROM) h is a random function

Niederreiter Cryptosystem

⊲ Public key: Parity-check matrix H of a binary Goppa code of length n and

dimension k

⊲ Secret Key: t-correcting algorithm ψ

⊲ Encryption: x y = HxT with x of weight t

⊲ Decryption: compute ψ(y) and recover x

Assumption. k = n−mt H is a mt× n matrix

Signing with Niederreiter Scheme

⊲ ROM implies to perform complete decoding

⊲ But probability that a randomly drawn vector in {0, 1}n is at distance t from a

codeword
(

n
t

)

2mt
>

(

n
t

)

nt
≃

1

t!
 t has to be small

⊲ Courtois-Finiasz-Sendrier (’01) proposed a method for producing Niederreiter

signatures for any hash value:

• Modifying m until it lies within distance t from a codeword

• Efficiency implies to take small t (t 6 12)

• Security implies to take large n (n > 16)

CFS Scheme

Sign(m, ψ)

1. s = h(m);

2. i = 0;

3. Repeat

4. i = i+ 1;

5. si = h(s, i);

6. z = ψ(si);

7. until z 6= ∅;

8. Return σ = (z, i);

CFS Scheme

Verify

(

m, (z, i),H, t
)

1. s = h(m);

2. si = h(s, i)

3. If
(

si = HzT and wt (z) = t
)

then

4. Return accept;

5. else

6. Return reject;

Performances (80-bit)

Performances with n = 2
m

and k = n−mt

Signature Verification Length Key size (bits)

(m, t) t! t2 m3 t2m tm+ log2 t tm2m

(21, 10) 241.6 211.0 213.3 228.7

(19, 11) 244.9 211.1 212.4 226.7

(15, 12) 247.7 211.0 183.5 222.4

CFS Scheme - Alternative Way

⊲ Decoding any syndrome by increasing the number of errors t t+ δ where
(

n

t+ δ

)

> 2mt

⊲ These extra δ errors found through an exhaustive search

 Signing time increased by
(

n
δ

)

⊲ Real gain when

(

n

δ

)

< t! generally δ 6 2

Security

⊲ Key-Recovery Attack

• Recovering the support and the Goppa polynomial

• Best attack performs an exhaustive search on polynomials of degree t and

applies Sendrier’s SSA algorithm

• Time complexity O(2mt) for polynomials with coefficients in F2m

⊲ Existential Forgery under No-Message Attack

• Syndrome Decoding Problem

⊲ Existential Forgery under Chosen Message Attack

• “One-out-of-many Syndrome” Decoding Problem

Existential Forgery - Algorithmic Problems

Definition. (Syndrome Decoding Problem)

• Input. H, a syndrome s and weight t

• Output. word e of weight 6 t such that HeT = s

Definition. (“One-out-of-many Syndrome” Decoding Problem)

• Input. H, a list L of syndromes and weight t

• Output. word e of weight 6 t and a syndrome s in L such that HeT = s

Existing Approaches

⊲ Syndrome Decoding Problem

• Information Set Decoding (ISD) algoritm Time complexity O
(

2mt/2
)

⊲ “One-out-of-many Syndrome” Decoding Problem (Sendrier ’11)

• Johansson and Jönsson’s algorithm Time complexity O
(

2mt/2
)

• Bleinchebacher’s Attack Time complexity O
(

2mt/3
)

Bleinchebacher’s Attack - Preliminaries

⊲ Based on the Generalized Birthday Paradox Problem

• Input. f : E −→ {0, 1}r and ℓ > 1

• Output. Finding x1, . . . , xℓ in E such that
ℓ
⊕

i=1

f(xi) = 0

⊲ Birthday Paradox O
(

2
r

2

)

⊲ Wagner (’02) showed that when ℓ = 4 then time/memory complexity O(2r/3)

Bleinchebacher’s Attack

⊲ Searching for words e1, e2, e3 of weight t/3 and h(m) such that

HeT1 +HeT2 +HeT3 + h(m) = 0

1. Build 3 lists L0, L1, L2 of
(

n
t/3

)

syndromes of words of weight t/3

2. New list L′
0 from L0 into L1 by XORing and keeping the resulting syndromes

whose first mt/3 positions are zero

3. Build one (virtual) list L3 of 2mt/3 target hash values

4. Merge L2 and L3 into L′
1 by XORing and keeping the resulting syndromes

whose first mt/3 positions are zero

5. Search for a collision between L′
0 and L′

1 over the last 2mt/3 bits

Remark.

⊲ At least one solution if
(

n
t/3

)

> 2mt/3

⊲ Time/Memory is about O(2mt/3)

Parallel CFS (Finiasz ’10)

⊲ Reparation of CFS

⊲ Sign a message m twice (or i times) by means of two (or i) different hash

functions h1 and h2 (or . . . , hi)

⊲ For avoiding (trivial) attacks, the two signatures has to be related signing

with second version of CFS

Finding e1 and e2 of weight at most t+ δ such that

HeT1 = h1(m) and HeT2 = h2(m)

⊲ Time/memory complexity Bleinchebacher’s attack becomes O(22mt/3)

m t i Key size Cost Size

18 9 3 5.0 MB 220.0 288

19 9 2 10.7 MB 219.5 206

20 8 3 20.0 MB 216.9 294

80-bit security/δ = 2

Quasi-Dyadic CFS Signature

⊲ CFS-like scheme by Barreto-Cayrel-Misoczki-Niebhur (’11)

⊲ Based on binary Quasi-dyadic Goppa codes (Cauchy matrices)

⊲ Smaller keys than CFS scheme (reduction by a factor t)

Cauchy Matrix

⊲ z = (z0, . . . , zt−1) ∈ F
t
qm

⊲ x = (x0, . . . , xn−1) ∈ F
n
qm with xi 6= zj

Definition. C(z,x) is Cauchy matrix if

C(z,x)
def
=













1

z0 − x0
· · ·

1

z0 − xn−1
...

. . .
...

1

zt−1 − x0
· · ·

1

zt−1 − xn−1













Proposition. The code defined by the parity-check C(z,x) is a Goppa code

whose polynomial is γ(z) =
t−1
∏

i=0

(z − zi)

Dyadic Matrix

Definition.

⊲ n = 2ℓ for some integer ℓ > 1

⊲ h = (h0, . . . , hn−1) from F
n
q

∆(h)
def
=
(

hi⊕j

)

06i6n−1
06j6n−1

⊲ ∆(h) is called a dyadic matrix

Proposition. (Misoczki-Barreto ’09)

⊲ ∆(h) is a Cauchy matrix if and only if Fq is of characteristic 2 and

1

hi⊕j
=

1

hj
+

1

hi
+

1

h0

⊲ Furthermore, for any θ ∈ Fq, let zi
def
= 1/hi + θ and xj

def
= 1/hj + 1/h0 + θ

∆(h) = C(z,x)

Quasi-Dyadic CFS - Key Generation

⊲ Choose t and let λ be the smallest integer such that t 6 2λ

 (sk, pk) = (f ,G)

⊲ G is a binary k × n generator matrix with n = n02
λ and f ∈ F

n
2m such that:

GfT = 0

⊲ f is “almost” the first row of a Dyadic Cauchy matrix

• “Inside-Block” equations: 0 6 a 6 n0 − 1 and 0 6 i, j 6 2λ − 1

1

fa2λ+i⊕j

=
1

fa2λ⊕i

+
1

fa2λ⊕j

+
1

fa2λ

• “Between-Block” equations: 0 6 a 6 n0 − 1 and 0 6 i 6 2λ − 1

1

fa2λ+i

+
1

fa2λ

=
1

fi
+

1

f0

Algebraic Attack - Faugère -Najahi-O-Perret-Tillich (’12)

Fact.

⊲ G =
(

Ik R

)

 n− k = mt “free” variables

⊲ “Inside-Block” relations imply that fi with 0 6 i 6 2λ − 1 is solely

determined by f0, f1, f2, . . . , f2λ−1

⊲ One fi can be fixed to an arbitrary value f0

Assumption. f1, f2, . . . , f2λ−1 are known mt− 2λ “free” variables

0 6 i 6 2λ − 1 : Ki
def
=

1

fi
+

1

f0

Algebraic Attack

⊲ “Between-Block” equations become quadratic equations

Ki fa2λfa2λ+i + fa2λ+i + fa2λ = 0

⊲ Number of quadratic equations:
(n

2λ
− 1
)

(2λ − 1)

⊲ Quasi-Dyadic CFS parameters are such that:

• t 6 12 λ 6 4

• n is large with n 6 2m − 2λ

 Number of equations ≫ number of variables

Linearization Technique

⊲ Each product fifj is replaced by a new variable zi,j

 Total number of new variables

(

mt− 2λ + 2

2

)

⊲ At least one solution to the linearized system if:

(n

2λ
− 1
)

(2λ − 1) >

(

mt− 2λ + 2

2

)

⊲ All the proposed parameters satisfy this condition

Example.

• t = 8 m > 13

• t = 10 m > 13

• t = 12 m > 14

Complexity of the Attack

⊲ Exhaustive search for determining each Ki O
(

2λm
)

⊲ Linear algebra O
(

(mt)2ω
)

where 2 6 ω 6 3

(m, t)1 Exhaustive search (λ = 4) Linear algebra (ω = 2.376)

(21, 10) 284 234

(19, 11) 276 234

(15, 12) 260 233

1
80-bit security

⊲ Open issue. Improving the exhaustive search part (still in progress)

Signing without Decoding (Kabatianskii-Krouk-Smeets ’97)

⊲ Possible if one is able to find:

• Signing function Σ : m 7−→ σ of weight t

• Verification function χ such that χ(m) = HσT

⊲ It would allow to sign with random linear codes

⊲ KKS proposed linear maps for Σ and χ

Σ : m 7−→mG

χ : m 7−→ FmT

Assumption. G generates a linear code whose codewords v are such that:

t1 6 wt (v) 6 t2

KKS Scheme - Key Generation

⊲ Security parameter δ, k, n, r, N such that k < n < r < N and 0 < δ ≪
n

2

⊲ Pick at random

• k × n matrix G

• J ⊂ {1, . . . , N} of cardinality n

• r ×N matrix H

⊲ Compute r × k matrix F
def
= H(J)GT

⊲ Set t1
def
=
n

2
− δ and t2

def
=
n

2
+ δ

sk = (J,G) and pk = (H ,F , t1, t2)

KKS Scheme

⊲ σ ← Sign(m): Compute σ of {1, 0}N such that:

σJ = mG and σ[1...N]\J = 0

⊲ Verify(m, σ)

HσT = FmT and t1 6 wt (σ) 6 t2

Preliminary Observations

Notation.

• S
def
=
{

Valid KKS message/signature (m, σ)
}

• Cpublic
def
=
{

c ∈ {0, 1}k+N :
(

F H

)

cT = 0
}

Fact.

1. S is a linear subspace of Cpublic because of FmT = HσT

2. S is of dimension k

Security of KKS Scheme

1. Basis of S universal forgery

KKS scheme is a ℓ-time signature scheme with ℓ < k

2. If σ1, . . . , σℓ are ℓ signatures then

ℓ
⋃

i=0

support(σj) ⊂ J

Proposition. σ1, . . . , σℓ are codewords of weight of t drawn uniformly and

independently

E

[∣

∣

∣

∣

∣

ℓ
⋃

i=0

support(σj)

∣

∣

∣

∣

∣

]

= n

(

1−

(

1−
t

n

)ℓ
)

Remark. t ≃
n

2
 n(1−

1

2ℓ
) positions of J are known

Corollary. KKS is one-time signature

“Noisy” KKS (Barreto-Misoczki-Simplicio ’11)

Assumption. h ispublic hash function

⊲ (σ, v)← Sign(m)

• Pick at random e ∈ {0, 1}N such that wt (e) = n

• Compute v
def
= h(m,HeT)

• Compute y ∈ {0, 1}N such that:

yJ = vG and y[1...N]\J = 0

• σ
def
= y + e

⊲ Verify(v, σ) checks whether

h(m,HσT + FvT) = v and wt (σ) 6 2n

Further Observations

Fact.

1. S[k+1...k+N]\J = {0}

2. SJ is a linear code of dimension k containing low-weight words ≃ n/2 with

n/2≪ N + k

Corollary.

⊲ Recovering S by applying algorithms searching for low-weight codewords

⊲ F = H(J)GT
 Cpublic is not a random code

Universal Forgery under No-Message Attack (O-Tillich ’11)
(

F H

)

 S = Secret

⊲ Dumer’s ISD algorithm: ℓ, p with p very small

• Random I ⊂ {1, . . . , N + k} of cardinality k +K + ℓ

• Outputs x of weight ≃ n/2 such that xI is of weight 2p

⊲ Analysis shows that the attack performs better when

• I ⊂ {k + 1, . . . , N + k}

• Rates of S and Cpublic are close

• n is small

⊲ Bootstrapping Second codeword y is found more easily from x

• Take at random I ⊂ {k + 1, . . . , N + k} \ support(x)

Open issue. Finding “good” parameters immune against this attack

Instead of Correcting?

⊲ “Hash-and-Sign” Paradigm considers h(m) as a“noisy” version of signature

 h(m) should not be changed

⊲ CFS scheme simulates complete decoding

 h(m) has to be changed

⊲ With J.P. Tillich we propose to rephrase the problem in the framework of

Rate-Distortion Theory (also called lossy source coding)

III. “Lossy Source Coding” Signatures

Rate-Distorsion Theory

⊲ Aiming at representing/estimating/quantizing a source (= random variable

X(ω)) taking infinite numbers of values by means of a finite number N of values

X(ω) ∈ X R(X)
def
=
{

X̂(ω1), . . . , X̂(ωN)
}

Example.

• Representation of real numbers with a fixed number of bits

• Lossy-data compression

⊲ Representation cannot be done exactly maximum distorsion D

∀ω : dist
(

X̂(ω), X(ω)
)

6 D

⊲ Choosing N optimal values

X(ω) Find the closest point in R(X)

Polar Codes (Arikan ’07)

⊲ Length N = 2n

⊲ Encoding based on Fast Fourier Transform architecture

a

b

a+b

b

⊲ Encoding/Decoding can be made in O(N logN) operations

⊲ Capacity-achieving codes for any binary memoryless channel

⊲ Optimal for lossy source coding of a binary symetric source (Korada ’10)

Encoding with Polar Codes (I)

Example. n = 3

⊲ Which code do we get?

Encoding with Polar Codes (II)

Extended Hamming code [8, 4, 4] defined by the generator matrix:

G =















1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1















 Which entries have to be kept zero?

“Polarization” Phenomenon

0.228

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.4375

0.4375

0.4375

0.4375

0.0625

0.0625

0.0625

0.0625

0.684

0.684

0.191

0.1910.037

0.004

0.121

0.121

0.004

0.015

0.008

0.0000016

0.9

0.467

0.346

⊲ General rule For a code of length N and dimension K then set to 0 the N −K

worst positions

⊲ Entries set to zero are called “frozen” (red)

Using Polar Codes in Cryptography

⊲ Adding diversity

• Changing the alphabet from binary to GF (4) = {0, 1, w, w2}

• Not considering only one transform





1 0

1 1



 but a set of transforms











1 w

w 1



 ,





w2 w

1 1



 ,





w2 1

w 1











• Randomly picking 2n−1 transforms at each level i of {1, . . . , n}

⊲ Expanding from GF (4) to GF (2) binary linear code of length and

dimension twice as large

⊲ Masking the structure like McEliece

Estimating Minimum Distance

Proposition. Minimum distance of a polar code with information set containing

only integers whose binary representation does not contains less than ℓ zeros is at

least 2ℓ.

⊲ Proposed parameters (over GF (4))

• N = 4, 096, K = 1, 255, ℓ = 7 minimum distance > 128

• 80-bit security (Peters’ q-ary version of ISD)

Binary Distorsion Values (4, 000, 000 tests)

Maximum distorsion 6 2, 268

Performances

⊲ Binary code of length 8, 182 and dimension 2, 510

⊲ Maximum distorsion 6 2, 268 1400-bit security (ISD for binary codes)

⊲ Average time for one signature: ≃ 4ms

⊲ Key size: 6.5 Mbyte

