Matthieu Legeay

Reed-Muller Code

IRMAR, University of Rennes 1, France

CBC 2012

Plan

- Motivation and principle
- 2 Recalls
- Results
- 4 Conclusion and further works

Motivation

• Reed-Muller codes have efficient decoding algorithms

Motivation and principle

- Reed-Muller codes have efficient decoding algorithms
- ⇒ No algorithm reaches the lower bound on the minimum distance decoding capability

Motivation and principle

- Reed-Muller codes have efficient decoding algorithms
- ⇒ No algorithm reaches the lower bound on the minimum distance decoding capability
 - Other algorithms using algebraic properties practically correct more errors

Motivation

- Reed-Muller codes have efficient decoding algorithms
- \Rightarrow No algorithm reaches the lower bound on the minimum distance decoding capability
 - Other algorithms using algebraic properties practically correct more errors
- \Rightarrow The complexity of the decoder is quadratic in the code length

Principle

Take y = c + e and compute :

$$\sum_{i} \lambda_{i} \sigma_{i}(y) = \sum_{i} \lambda_{i} \sigma_{i}(c) + \sum_{i} \lambda_{i} \sigma_{i}(e)$$

where $(\sigma_i)_i \in Perm(C)$ and $(\lambda_i)_i \in \mathbb{F}_2$.

Principle

Motivation and principle

Take y = c + e and compute :

$$\sum_{i} \lambda_{i} \sigma_{i}(y) = \sum_{i} \lambda_{i} \sigma_{i}(c) + \sum_{i} \lambda_{i} \sigma_{i}(e)$$

where $(\sigma_i)_i \in Perm(C)$ and $(\lambda_i)_i \in \mathbb{F}_2$.

 $\Rightarrow c' = \sum_i \lambda_i \sigma_i(c)$ lives in a subcode C_{ad} of C, with $k_{ad} \leq k$.

Principle

Motivation and principle

Take y = c + e and compute :

$$\sum_{i} \lambda_{i} \sigma_{i}(y) = \sum_{i} \lambda_{i} \sigma_{i}(c) + \sum_{i} \lambda_{i} \sigma_{i}(e)$$

where $(\sigma_i)_i \in Perm(C)$ and $(\lambda_i)_i \in \mathbb{F}_2$.

$$\Rightarrow c' = \sum_i \lambda_i \sigma_i(c)$$
 lives in a subcode C_{ad} of C , with $k_{ad} \leq k$.

$$\Rightarrow e' = \sum_i \lambda_i \sigma_i(e)$$
 is an error vector, $wt(e') \leq \lambda t$.

Recalls

r-order Reed-Muller codes

Let $0 \le r \le m$, $n = 2^m$ and $(\alpha_1, \ldots, \alpha_n) \in (\mathbb{F}_2^m)^n$.

$$\mathcal{R}(r,m) = \{(f(\alpha_1), \dots, f(\alpha_n)) \in \mathbb{F}_2^n\}$$

with $f(x_1, \ldots, x_m)$ a binary multivariate polynomial of degree $\leq r$.

r-order Reed-Muller codes

Let $0 \le r \le m$, $n = 2^m$ and $(\alpha_1, \ldots, \alpha_n) \in (\mathbb{F}_2^m)^n$.

$$\mathcal{R}(r,m) = \{(f(\alpha_1),\ldots,f(\alpha_n)) \in \mathbb{F}_2^n\}$$

with $f(x_1, \ldots, x_m)$ a binary multivariate polynomial of degree $\leq r$.

•
$$\mathcal{R}(r, m)$$
 is a $[n = 2^m, k = \sum_{i=0}^r {m \choose i}, d = 2^{m-r}]$ code.

Recalls

r-order Reed-Muller codes

Let $0 \le r \le m$, $n = 2^m$ and $(\alpha_1, \ldots, \alpha_n) \in (\mathbb{F}_2^m)^n$.

$$\mathcal{R}(r,m) = \{(f(\alpha_1),\ldots,f(\alpha_n)) \in \mathbb{F}_2^n\}$$

with $f(x_1,...,x_m)$ a binary multivariate polynomial of degree $\leq r$.

- $\mathcal{R}(r, m)$ is a $[n = 2^m, k = \sum_{i=0}^r {m \choose i}, d = 2^{m-r}]$ code.
- $\mathcal{R}(0, m)$ is the repetition code.

Motivation and principle

r-order Reed-Muller codes

Let $0 \le r \le m$, $n = 2^m$ and $(\alpha_1, \ldots, \alpha_n) \in (\mathbb{F}_2^m)^n$.

$$\mathcal{R}(r,m) = \{(f(\alpha_1),\ldots,f(\alpha_n)) \in \mathbb{F}_2^n\}$$

with $f(x_1,...,x_m)$ a binary multivariate polynomial of degree $\leq r$.

- $\mathcal{R}(r, m)$ is a $[n = 2^m, k = \sum_{i=0}^r {m \choose i}, d = 2^{m-r}]$ code.
- $\mathcal{R}(0, m)$ is the repetition code.
- $\mathcal{R}(m,m)$ is all the space \mathbb{F}_2^n .

Permutation group

Theorem

$$Perm(\mathcal{R}(r,m)) = GA_m(\mathbb{F}_2)$$

= $\mathcal{T} \rtimes GL_m(\mathbb{F}_2)$

Recalls

Permutation group

Theorem

$$Perm(\mathcal{R}(r,m)) = GA_m(\mathbb{F}_2)$$

= $\mathcal{T} \rtimes GL_m(\mathbb{F}_2)$

•
$$\mathcal{T} = \left\{ T_{\alpha} : \begin{array}{ccc} \mathbb{F}_{2}^{m} & \to & \mathbb{F}_{2}^{m} \\ x & \mapsto & x + \alpha \end{array} \right\}, \alpha \in \mathbb{F}_{2}^{m}$$

$$T_{\alpha} \cdot f(x) \stackrel{\text{def}}{=} f(T_{\alpha}(x)) = f(x + \alpha)$$

Permutation group

Theorem

$$Perm(\mathcal{R}(r,m)) = GA_m(\mathbb{F}_2)$$

= $\mathcal{T} \rtimes GL_m(\mathbb{F}_2)$

•
$$\mathcal{T} = \left\{ T_{\alpha} : \begin{array}{ccc} \mathbb{F}_{2}^{m} & \to & \mathbb{F}_{2}^{m} \\ x & \mapsto & x + \alpha \end{array} \right\}, \alpha \in \mathbb{F}_{2}^{m}$$

Recalls

$$T_{\alpha} \cdot f(x) \stackrel{\text{def}}{=} f(T_{\alpha}(x)) = f(x + \alpha)$$

• $GL_m(\mathbb{F}_2) = \{ \text{ non-singular binary matrices } G \text{ of size } m \times m \}$

$$G \cdot f(x) \stackrel{\text{def}}{=} f(G.x)$$

With \mathcal{T}

Proposition 1

$$(Id + T_{\alpha}) \cdot \mathcal{R}(2, m) \stackrel{def}{=} \{f + T_{\alpha} \cdot f | f \in \mathcal{R}(2, m)\}$$
 is a subcode of $\mathcal{R}(2, m)$.

Results •00000000

With \mathcal{T}

Proposition 1

$$(Id + T_{\alpha}) \cdot \mathcal{R}(2, m) \stackrel{\text{def}}{=} \{f + T_{\alpha} \cdot f | f \in \mathcal{R}(2, m)\}$$
 is a subcode of $\mathcal{R}(2, m)$.

Results •00000000

Proposition 2

 $(Id + T_{\alpha}) \cdot \mathcal{R}(2, m)$ is isomorphic to $\mathcal{R}(1, m-1)$.

With \mathcal{T}

Proposition 1

$$(Id + T_{\alpha}) \cdot \mathcal{R}(2, m) \stackrel{\text{def}}{=} \{f + T_{\alpha} \cdot f | f \in \mathcal{R}(2, m)\}$$
 is a subcode of $\mathcal{R}(2, m)$.

Results 00000000

Proposition 2

$$(Id + T_{\alpha}) \cdot \mathcal{R}(2, m)$$
 is isomorphic to $\mathcal{R}(1, m - 1)$.

Idea for proof...

- **1** $(f + T_{\alpha} \cdot f)$ is an affine function $x \Rightarrow r' = 1$
- $(f + T_{\alpha} \cdot f)(x + \alpha) = (f + T_{\alpha} \cdot f)(x) \Rightarrow m' = m 1$

Proposition 1

$$(Id + G) \cdot \mathcal{R}(2, m) \stackrel{def}{=} \{f + G \cdot f | f \in \mathcal{R}(2, m)\}$$
 is a subcode of $\mathcal{R}(2, m)$.

Results 00000000

Proposition 1

$$(Id + G) \cdot \mathcal{R}(2, m) \stackrel{def}{=} \{f + G \cdot f | f \in \mathcal{R}(2, m)\}$$
 is a subcode of $\mathcal{R}(2, m)$.

Results

What are the properties of this subcode? Length? Dimension? Minimum Distance?

Proposition 1

$$(Id + G) \cdot \mathcal{R}(2, m) \stackrel{def}{=} \{f + G \cdot f | f \in \mathcal{R}(2, m)\}$$
 is a subcode of $\mathcal{R}(2, m)$.

Results

What are the properties of this subcode? Length? Dimension? Minimum Distance?

 \Rightarrow Hard to answer in the general case.

• By writing $f(x) = x^t F x + a_f$, with F upper triangular,

$$(f+G\cdot f)(x)=x^t(F+G^tFG)x$$

Results

 $ightharpoonup \mathcal{P}_G: egin{array}{cccc} \mathcal{M}_m(\mathbb{F}_2) & \to & \mathcal{M}_m(\mathbb{F}_2) \\ F & \mapsto & F+G^tFG \end{array}$ does not keep upper-triangularity.

• By writing $f(x) = x^t F x + a_f$, with F upper triangular,

$$(f+G\cdot f)(x)=x^t(F+G^tFG)x$$

$$ightharpoonup \mathcal{P}_G: egin{array}{cccc} \mathcal{M}_m(\mathbb{F}_2) & \to & \mathcal{M}_m(\mathbb{F}_2) \\ F & \mapsto & F+G^tFG \end{array}$$
 does not keep upper-triangularity.

• Rewrite G = Id + E, hence

$$(f+G\cdot f)(x)=x^t(E^tF+FE+E^tFE)x$$

$$\sim \mathcal{P}_E: \begin{array}{ccc} \mathcal{M}_m(\mathbb{F}_2) & \to & \mathcal{M}_m(\mathbb{F}_2) \\ F & \mapsto & E^tF + FE + E^tFE \end{array}$$

• By writing $f(x) = x^t F x + a_f$, with F upper triangular,

$$(f+G\cdot f)(x)=x^t(F+G^tFG)x$$

Results 00000000

$$ightharpoonup \mathcal{P}_G: egin{array}{cccc} \mathcal{M}_m(\mathbb{F}_2) & \to & \mathcal{M}_m(\mathbb{F}_2) \\ F & \mapsto & F+G^tFG \end{array}$$
 does not keep upper-triangularity.

• Rewrite G = Id + E, hence

$$(f+G\cdot f)(x)=x^t(E^tF+FE+E^tFE)x$$

$$\rightsquigarrow \mathcal{P}_E: \begin{array}{ccc} \mathcal{M}_m(\mathbb{F}_2) & \to & \mathcal{M}_m(\mathbb{F}_2) \\ F & \mapsto & E^tF + FE + E^tFE \end{array}$$

Result on length

Proposition 2

 $(Id + G) \cdot \mathcal{R}(2, m)$ is isomorphic to a subcode of length $n - 2^{m-r}$

Results 000000000

Result on length

Proposition 2

 $(Id + G) \cdot \mathcal{R}(2, m)$ is isomorphic to a subcode of length $n - 2^{m-r}$

Results

- If r = 1, $n' = 2^{m-1}$ we find again that the subcode is isomorphic to $\mathcal{R}(1, m-1)$.
- If r = 2. $n' = 2^m 2^{m-2}$...

Result on length

Proposition 2

 $(Id + G) \cdot \mathcal{R}(2, m)$ is isomorphic to a subcode of length $n - 2^{m-r}$

- If r = 1. $n' = 2^{m-1}$ we find again that the subcode is isomorphic to $\mathcal{R}(1, m-1)$.
- If r = 2. $n' = 2^m 2^{m-2}$...
- \Rightarrow We can do better...

Some columns are equal in practice.

Result on dimension

Proposition 3

$$(Id + G) \cdot \mathcal{R}(2, m)$$
 has dimension $k' \leq 4r(m - r) + 1$

Idea for proof...

$$\mathcal{N}(m,r) = \sum_{j=0}^{r} \prod_{i=0}^{j-1} \frac{(2^m - 2^i)(2^m - 2^i)}{2^j - 2^i} \le 2^{(2m-r)r+1}$$

Result on dimension

Proposition 3

$$(Id + G) \cdot \mathcal{R}(2, m)$$
 has dimension $k' \leq 4r(m - r) + 1$

Idea for proof...

$$\mathcal{N}(m,r) = \sum_{j=0}^{r} \prod_{i=0}^{j-1} \frac{(2^m - 2^i)(2^m - 2^i)}{2^j - 2^i} \le 2^{(2m-r)r+1}$$

• If
$$r = 1$$
, $k' \le 4(m-1) + 1$

• If
$$r = 2$$
, $k' \le 8(m-2) + 1...$

Result on dimension

Proposition 3

$$(Id + G) \cdot \mathcal{R}(2, m)$$
 has dimension $k' \leq 4r(m - r) + 1$

Idea for proof...

$$\mathcal{N}(m,r) = \sum_{j=0}^{r} \prod_{i=0}^{j-1} \frac{(2^m - 2^i)(2^m - 2^i)}{2^j - 2^i} \le 2^{(2m-r)r+1}$$

• If
$$r = 1$$
, $k' \le 4(m-1) + 1$

• If
$$r = 2$$
, $k' \le 8(m-2) + 1...$

 \Rightarrow This bound is only intersting for small values of r ($r \le 0.15m$).

Result on dimension

With
$$E$$
 of shape $E(\mathbf{e}_1,\ldots,\mathbf{e}_{m-1})=\left(egin{array}{ccc} 0 & 0 & \cdots & 0 \\ \mathbf{e}_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{e}_{m-1} & & 0 \end{array}\right)$

Results

where \mathbf{e}_i is a binary vector of length i

Result on dimension

With
$$E$$
 of shape $E(\mathbf{e}_1,\ldots,\mathbf{e}_{m-1})=\left(\begin{array}{cccc}0&0&\cdots&0\\\mathbf{e}_1&0&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\\mathbf{e}_{m-1}&&0\end{array}\right)$

where \mathbf{e}_i is a binary vector of length i

Proposition 4

$$(Id+G)\cdot \mathcal{R}(2,m)$$
 has dimension $k'\leq \sum\limits_{i=0}^{r-1}(m-i)=rm-\frac{r(r-1)}{2}$

Motivation and principle

With
$$E$$
 of shape $E(\mathbf{e}_1,\ldots,\mathbf{e}_{m-1}) = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \mathbf{e}_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{e}_{m-1} & & 0 \end{pmatrix}$

where \mathbf{e}_i is a binary vector of length i

Proposition 4

$$(Id+G)\cdot \mathcal{R}(2,m)$$
 has dimension $k'\leq \sum\limits_{i=0}^{r-1}(m-i)=rm-\frac{r(r-1)}{2}$

⇒ This bound is never reached in practice...

Result on minimum distance

Remark

 $(Id + G) \cdot \mathcal{R}(2, m)$ has minimum distance $d' \geq d = 2^{m-2}$

Result on minimum distance

Remark

 $(Id + G) \cdot \mathcal{R}(2, m)$ has minimum distance $d' \geq d = 2^{m-2}$

 \Rightarrow In practice $d' = d = 2^{m-2}...$

Examples
$$(1/2)$$

$$G = Id + E = \left(egin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \ g_1 & 1 & 0 & 0 & 0 \ 0 & g_2 & 1 & 0 & 0 \ 0 & 0 & g_3 & 1 & 0 \ 0 & 0 & 0 & g_4 & 1 \end{array}
ight)$$

$$G = Id + E = \left(egin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \ g_1 & 1 & 0 & 0 & 0 \ 0 & g_2 & 1 & 0 & 0 \ 0 & 0 & g_3 & 1 & 0 \ 0 & 0 & 0 & g_4 & 1 \end{array}
ight)$$

• $G_1: g_1 = 1$ and $g_2 = g_3 = g_4 = 0$ $(Id + G_1) \cdot \mathcal{R}(2,5)$ is a [32,4,8] subcode, isomorphic to $\mathcal{R}(1,3)$

Examples (2/2)

• $G_2: g_1 = g_2 = 1$ and $g_3 = g_4 = 0$ $(Id + G_2) \cdot \mathcal{R}(2,5)$ is a [32,8,8] subcode. We have $k' = 2m - 2 \le 2m - 1$.

Examples (2/2)

- $G_2: g_1=g_2=1 \text{ and } g_3=g_4=0$ $(Id + G_2) \cdot \mathcal{R}(2,5)$ is a [32,8,8] subcode. We have k' = 2m - 2 < 2m - 1.
- $G_3: g_1=g_2=g_3=1 \text{ and } g_4=0$ $(Id + G_3) \cdot \mathcal{R}(2,5)$ is a [32, 10, 8] subcode. We have k' = 3m - 5 < 3m - 3.

Examples (2/2)

Motivation and principle

- $G_2: g_1=g_2=1 \text{ and } g_3=g_4=0$ $(Id + G_2) \cdot \mathcal{R}(2,5)$ is a [32, 8, 8] subcode. We have k' = 2m - 2 < 2m - 1.
- $G_3: g_1=g_2=g_3=1 \text{ and } g_4=0$ $(Id + G_3) \cdot \mathcal{R}(2,5)$ is a [32, 10, 8] subcode. We have k' = 3m - 5 < 3m - 3.
- $G_4: g_1=g_2=g_3=g_4=1$ $(Id + G_4) \cdot \mathcal{R}(2,5)$ is a [32, 12, 8] subcode. We have k' = 4m - 8 < 4m - 6.

Conclusion

- \Rightarrow We have constructed new subcodes from $\mathcal{R}(2, m)$
- \Rightarrow We have a bound on the dimension of the projected codes, and in some cases we can tighten it.

Conclusion

- \Rightarrow We have constructed new subcodes from $\mathcal{R}(2, m)$
- \Rightarrow We have a bound on the dimension of the projected codes, and in some cases we can tighten it.
 - To have better results for all possible matrices *E*.
 - To understand the improvements we have in practice.
 - To apply this principle with a view to decoding.

Thank You for your attention!