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Motivation

@ Reed-Muller codes have efficient decoding algorithms

= No algorithm reaches the lower bound on the minimum distance
decoding capability

@ Other algorithms using algebraic properties practically correct
more errors

= The complexity of the decoder is quadratic in the code length
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where (0;); € Perm(C) and (\;); € Fa.
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Principle

Take y = ¢ + e and compute :
Z )\,'O','(y) = Z )\,'J,'(C) + Z )\,-a,-(e)
where (0;); € Perm(C) and (\;); € Fa.
= ¢’ =), \joi(c) lives in a subcode C,q of C, with kg < k.

= €' =), \ioj(e) is an error vector, wt(e’) < At.
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with f(x1,...,Xxm) a binary multivariate polynomial of degree < r.
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r-order Reed-Muller codes
Let0<r<m, n=2"and (a1,...,a,) € (F§)".

R(r,m)={(f(c1),...,f(an)) € F3}

with f(x1,...,Xxm) a binary multivariate polynomial of degree < r.

@ R(r,m)isa[n=2" k=13 (7),d=2""] code.
i=0
e R(0, m) is the repetition code.

e R(m, m) is all the space [F7.
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Permutation group

Perm(R(r,m)) = GAn(F2)
= T % GLp(F2)

To £ (x) & F(Ta(x)) = f(x +a)

@ GLn(F2) = { non-singular binary matrices G of size m x m}

G- f(x): f(G.x)
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Proposition 1

(Id + T.) - R(2, m) def {f + T, - f|f € R(2,m)} is a subcode of

R(2, m).

Proposition 2

(Id + T,) - R(2, m) is isomorphic to R(1, m — 1).

Idea for proof...
Q@ (f+ T, f)is an affine function x = r' =1
Q@ (F+Ty Hx+a)=F+Ta-)x)=m=m-1
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With GL ()

Proposition 1

(Id + G) - R(2,m) %f {f+ G- f|f € R(2,m)} is a subcode of

R(2, m).

What are the properties of this subcode ?
Length ? Dimension ? Minimum Distance ?

= Hard to answer in the general case.
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With GL ()

e By writing f(x) = x"Fx + af, with F upper triangular,
(f + G- f)(x) = x"(F + G'FG)x

Mm(Fz) — Mm(Fz)
F — F+ G'FG
upper-triangularity.

~ Pg : does not keep

e Rewrite G = Id + E, hence
(f + G- f)(x) = x*(E*F + FE + E*FE)x

: Mm(Fz) — Mm(Fg)

~ Pe F  +— E'F+4FE+EFE

= Rank of E
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Result on length

Proposition 2
(Id + G) - R(2, m) is isomorphic to a subcode of length n — 2™~"

olfr=1n=2m1
we find again that the subcode is isomorphic to R(1, m — 1).
e lfr=2n =2m_om2

= We can do better...
Some columns are equal in practice.
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Proposition 3
(Id + G) - R(2, m) has dimension k" < 4r(m—r) +1

Idea for proof...
@ Rank(E'F + FE —|— E'FE) <2r

@ N(m,r)= Z H (2'"—2 )(2’"—2) < p(2m=r)r+1)
j=0i=

olfr=1kK<4(m-1)+1
o Ifr=2k'<8(m—-2)+1..

= This bound is only intersting for small values of r (r < 0.15m).
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Result on dimension

0o 0 - 0
e 0 0

With E of shape E(es,...,en—1) = )
em—1 0

where e; is a binary vector of length /

Proposition 4

r—1
(Id + G) - R(2, m) has dimension K' < >~ (m — i) = rm — "'31)
i=0

= This bound is never reached in practice...
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Result on minimum distance

(Id + G) - R(2, m) has minimum distance d’ > d = 2m~2




Results
[ ]

Result on minimum distance

(Id + G) - R(2, m) has minimum distance d’ > d = 2m~2

= In practice d’ = d =2m2...
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Results

Examples (1/2)

R —~ocooco
—_ o ooo

e G:gm=land g =g3=g4=0
(Id + G1) - R(2,5) is a [32,4, 8] subcode,
isomorphic to R(1,3)

10010110
01 010101
00110011
00001111
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e Ghr:gm=g=landgz=g4 =0
(Id + G2) - R(2,5) is a [32,8, 8] subcode.
We have k' =2m -2 <2m — 1.
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Examples (2/2)

e Ghr:gm=g=landgz=g4 =0
(Id + G2) - R(2,5) is a [32,8, 8] subcode.
We have k' =2m -2 <2m — 1.

© G3:gr=g=g3=1land gg =0
(Id + G3) - R(2,5) is a [32, 10, 8] subcode.
We have k' =3m —5<3m—3.

e Gp:gi=g=g3=gs=1
(Id + Ga) - R(2,5) is a [32,12, 8] subcode.
We have k' =4m —8 < 4m — 6.
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= We have constructed new subcodes from R(2, m)

= We have a bound on the dimension of the projected codes, and
in some cases we can tighten it.
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Conclusion

= We have constructed new subcodes from R(2, m)

= We have a bound on the dimension of the projected codes, and
in some cases we can tighten it.

@ To have better results for all possible matrices E.
@ To understand the improvements we have in practice.

@ To apply this principle with a view to decoding.
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Thank You for your attention !
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