Code Equivalence is Hard for Shor-like Quantum Algorithms

Hang Dinh

Indiana University South Bend

Code Equivalence (CE)

- The CE Problem:
 - Given two linear codes C and C'
 - Decide if C is equivalent to C' up to a permutation of the codeword coordinates
- Petrank and Roth, 1997 proved
 - Code Equivalence is unlikely NP-complete,
 - but is at least as hard as Graph Isomorphism
 - There's an efficient reduction from Graph Isomorphism to CE

Code Equivalence (CE)

- A search version of CE:
 - Given two permutation-equivalent linear codes C and C'
 - Find a permutation between C and C'
- Related to security of McEliece-type cryptosystems
 - In the case where the secret code is known
- Support Splitting Algorithm [Sendrier 1999]
 - Efficient for codes with small hull dimension, including Goppa codes and many binary codes
 - Inefficient for other codes, such as Reed-Muller codes.

Hidden Subgroup Problem (HSP)

- HSP is a generalization of problems possibly solved by Shor-like quantum algorithms.
- HSP over a finite group *G*:
 - Input: a black-box function f on G that distinguishes the left cosets of an unknown subgroup H < G, i.e.,

$$f(x) = f(y) \Leftrightarrow xH = yH$$

- Output: a generating set for H.
- There is a natural reduction from CE to HSP
 - where the group G is non-abelian (a *rich* wreath product)
 - So, can CE be solved efficiently by Shor-like algorithms?

Quantum Fourier Sampling (QFS)-Quantum part of Shor-like algorithms

Efficiency of Shor-like Algorithms

- Shor's quantum algorithms efficiently solve
 - HSP over cyclic groups $Z_N \rightarrow$ factorization
 - HSP over $Z_N \times Z_N$ \rightarrow discrete logarithm
- Quantum Fourier Sampling
 - Efficient for HSP over abelian groups
 - There are efficient quantum Fourier transforms for certain non-abelian cases [See Lomont 2004 for a survey].
 - But inefficient (or not known to be efficient) for interesting non-abelian cases, including symmetric and dihedral groups.

Our Results

- We show that in many cases of interest,
 - Solving the case of HSP reduced from CE by QFS requires rich, entangled measurements.
- Our results apply to many codes, including
 - Classical Goppa codes, rational Goppa codes
 [Dinh, Moore, Russell, CRYPTO 2011]
 - Reed-Muller codes (used in the Sidelnikov cryptosystem)
 [Dinh, Moore, Russell, Preprint 2011, <u>arXiv:1111.4382</u>]
- →Shor-like algorithms are unlikely to help break codebased cryptosystems in these cases.

HSP-hard Codes

- What codes make CE hard for Shor-like algorithms?
 - A linear code C is called HSP-hard if strong QFS reveals negligible information about the permutation between C and any code equivalent to C.
- Theorem[Dinh, Moore, Russell, CRYPTO 2011]: Let C be a q-ary [n,k]-code s.t. $k^2 \le 0.2n\log_q n$. Then C is HSP-hard if
 - 1) The automorphism group Aut(C) has size $\leq e^{o(n)}$
 - 2) The *minimal degree* of Aut(C) is $\geq \Omega(n)$.

the minimal number of coordinates moved by a non-identity permutation in Aut(C)

Reed-Muller Codes are HSP-hard

- Binary Reed-Muller code RM(r, m)
 - has length $n=2^m$ and dimension $k=\sum_{j=0}^r {m \choose j}$.
 - If r < 0.1m, then $k^2 \le 0.2nm$ for sufficiently large m.
- If C is a binary Reed-Muller code of length $n=2^m$, then
 - 1. $|Aut(C)| \le 2^{m^2+m} \le 2^{O(\log^2 n)} \le e^{O(n)}$
 - 2. The minimal degree of Aut(C) is exactly $2^{m-1} = n/2$.

Proof: Use the fact that

Aut(C) = general affine group of space \mathbf{F}_2^m

Open Question

 Are there other HSP-hard codes that are of cryptographic interest?