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Notation and packings

{0, 1}n = Fn : binary Hamming hypercube.
x = (xi), i = 1, ...n, y = (yi) ... vectors
d(x, y) = |{i : xi 6= yi}|: Hamming distance
A code: C ⊂ Fn

Linear code: C[n, k.d], C < Fn, dim C = k
d = 2r + 1: minimum distance between codewords

A code is a packing by spheres of radius r

H (n− k)× n: parity-check matrix
Syndrome: σ(x) = Htx
σ(c) = 0 ssi c ∈ C.

3 / 1



W*M

Binary storage medium of n cells
to store and update information.
Operations performed under some constraints,
dictated by technology, cost, efficiency, speed, fashion ...
The latest: Flash memories.

EXAMPLES OF W*M:

- write-unidirectional memory (WUM)
- write-isolated memory (WIM)
- reluctant memories (WRM)
- defective memories (WDM)
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Constrained memories

Memory is in state y ∈ Fn

Due to the constraints, only a subset A(y) of Fn is reachable from y.
The (directed) constraint graph (Fn, A):
digraph with vertex set Fn

an arc from y to y′ if and only if y′ is reachable from y.
The state y can be updated to v(y) states, where v(y) is the outdegree of y.
To store one among M messages, the following must clearly hold:

Theorem

M ≤ maxy∈Fn v(y).

Simple bound tight in some cases.
Here symmetric constraints (A is symmetric).

Asymptotically maximum achievable rate κ of the W*M

κ = (1/n) log2M ?
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Translation-invariant constraints

A(y) = y +A(0) = {y + x : x ∈ A(0)}

Set A(0) = A, |A| = an
A(x) : A-set centred at x
Translation-invariance is stronger than symmetry
Implies that the constraint graph is regular:
for all y ∈ Fn, |A(y)| = an.
Wlog assume we are in the state 0.
By the theorem:

M ≤ an
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Cloud encoding — packing by coverings
A coding strategy based on A-coverings

A subset B = {bi} of Fn is a A-covering or cloud if⋃
bi∈B

A(bi) = Fn.

That is, Fn is covered by the A-sets centred at the elements of B.

If a cloud B is an A-covering, so is any translate B + x, x ∈ Fn.
To write on a W*M, use the following encoding function:
to a message mi associate an A-covering Ci of Fn

mi ↔ Ci = {ci,1, ci,2, . . .},

where, for all i ⋃
ci,j∈Ci

A(ci,j) = Fn.

In that way, whatever the state y of the memory is, y can be updated to one of
the ci,j ’s encoding mi, while satisfying the constraints.
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Packing many coverings

Theorem

If B1, B2, . . . , BM are pairwise disjoint A-coverings, they yield a W*M-code of
size M .

What is the maximum number of A-coverings of packable in Fn,
i.e., having void pairwise intersection?
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Group coverings

The upper bound in the theorem is asymptotically tight.
1. Existence of small A-group coverings of Fn (i.e., clouds which are groups).
2. Finding pairwise disjoint clouds, becomes simple:
if G is a group A-covering with |G| = 2k,
then there are 2n−k pairwise disjoint A-coverings,
namely the cosets of G.
To that end, we use a greedy algorithm in a group version.

Theorem

There exists a group covering G of Fn of size 2k, with

k = n− log2 an + log2 n+O(1).

Example. Balancing sets (application to magnetic and optical storage systems)
A(0) = Bn/2(0).
k = (3/2) log2 n+O(1).
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Capacity

This scheme gives
M = 2n−k = Ω(an/n),

and the following result.

Theorem

κ = lim
n→∞

n−1 log2 an.
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More graph notation

Br(v) the ball (resp. Sr(v) the sphere) of radius r centred at v
the set of vertices within (resp. at) distance r from v.
Two vertices v1 and v2 such that v1 ∈ Br(v2) (resp. v1 ∈ Sr(v2))
r-cover (resp. exactly r-cover) each other.
A set (exactly) X ⊆ V r-covers a set Y ⊆ V if every vertex in Y is (exactly)
r-covered by at least one vertex in X.
KC,r(v) = C ∩Br(v) (resp.XC,r(v) = C ∩ Sr(v)) is the set of codewords
r-covering (resp. exactly r-covering) v.

11 / 1



Identification

Definition
A code C ⊆ V is called r-identifying if all the sets KC,r(v), v ∈ V , are nonempty
and distinct.

- every vertex is r-covered by at least one codeword
- every pair of vertices is r-separated by at least one codeword.

Application to fault diagnosis in multiprocessor computer systems.
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Covering by generalized shells

Theorem

Consider M ≥ 1 vertices c1, c2, · · · , cM (non necessarily distinct) of Fn

and M non-negative radii r1, r2, · · · , rM such that

Fn =

M⋃
j=1

Sri(c
j).

Then M ≥ n if n is even, and M ≥ n+ 1 if n is odd.
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Tightness

Bounds given by the theorem are tight :
for any vertex x we have

Fn =

n⋃
i=0

Si(x).

If n is even, then

Fn =
n−1⋃
i=1

Si(x) ∪ Sn/2(y)

where y is any vertex satisfying d(x, y) = n/2.

Corollary

Let C = {ci, Li} be a covering of the binary n-cube by shells, then Σi|Li| ≥ n.
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Frequency allocation

In order to provide mobile telephone service using a limited band in the
radio spectrum, the strategy is to dispatch users into cells.
A call is allocated a radio frequency.
The same frequency may be used simultaneously by another user, provided
the distance between the cells they originate from exceeds some threshold,
say r, to avoid interferences.
Let Γ = (V,E) be the graph where vertices are cells and edges connect
neighbouring cells with the usual metric.
f(x) is the call function, number of (active) users in cell x.
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Covering by packings

The call colouring problem on Γ consists in assigning f(x) colours
(frequencies) to each vertex x in V with the constraint that, within every
ball of a given radius r centred at x, no other point has a colour in
common with x.
The cells of a given colour clearly make for a code of minimum distance
r + 1 (i.e., a packing).
In the case when f = 1, i.e., when exactly one user per cell is active, these
packings are disjoint.
The problem is then to find a minimum covering by packings.
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Witness

Given a set C of q-ary n-tuples and c ∈ C, how many symbols of c suffice
to distinguish it from the other elements in C ?

This is a generalization of an old combinatorial problem, on which we
present (asymptotically tight) bounds and variations.
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Motivation

Coding theory asks for maximal codes such that every codeword is different
(has a large Hamming distance to all other codewords).

The notion of difference here is:
there should exist a small subset of coordinates on which
a codeword differs from every other,
so that it can be singled out by a small witness.
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Context

Equivalently, every codeword can be losslessly compressed to its projection
on a small subset.
Such codes arise in a variety of contexts,

in particular in machine learning theory,
where a witness is also called a specifying set or a discriminant.
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Definitions

A subset W (= W (c)) ∈
(
[n]
w

)
is a (minimal) Witness for c ∈ C if:

∀c′ ∈ C, c′ 6= c : πW (c′) 6= πW (c)

where πW is the projection on W .

Pattern: πW (c) = πW (c)(c).

f(q, n, w):
Maximal size of a code with minimal witnesses of size at most w.
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Previous work (binary case)

The average size of a witness is considered by Kushilevitz et al.
For a survey, see Jukna, where the following upper bound is given:

f(2, n, w) ≤
(
n

w

)
2w

Proof. Pigeon-hole principle:
there are at most this number of available patterns.

Immediate generalization to the q-ary case:

f(q, n, w) ≤
(
n

w

)
qw.
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Lower bounds

Easy facts:
- If C is a w- witness code, so is any translate C + x
- f(q, n, w) is an increasing function of q, n and w.

f(n,w) ≥ (q − 1)w
(
n

w

)
.

Proof. Pick C = Sw(0).
Notice that W (c) = support(c) for all c:

Every codeword has a unique pattern, namely its support.
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An improved upper bound

(See [C.,Randriam, Zémor] for the binary ; [C., Mesnager] for the q-ary
case).
For an optimal code (realizing |C| = f(q, n, w)), set

g(q, n, w) := f(q, n, w)/
(
n
w

)
.

Theorem
For q, w fixed, g(q, n, w) is decreasing with n.
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Consequences

Corollary
For fixed q, w,
limn→∞g(q, n, w) = f(q, n, w)/

(
n
w

)
exists.
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Asymptotics

Set w = ωn,
hq(x) the entropy function
hq(x) := −x logq x− (1− x) logq(1− x) + x logq(q − 1):

limn→∞n
−1logqf(q, n, ωn) = hq(ω), 0 ≤ ω ≤ (q − 1)/q.
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Witness with distance

f(q, n, w,≥ d) :=
maximal size of a w-witness code with minimum distance at least d.

Let’s go asymptotics and set

lim sup
n→∞

n−1 logq f(q, n, ωn,≥ δn) := φ(ω, δ).

From the previous proposition, we know that
φ(ω, δ) ≤ hq(ω).
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An open problem

The size of optimal w-witness codes is asymptotically known.

In the asymptotic case with minimum distance at least δn,

can we show
φ(ω, δ) < hq(ω) ?
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Non-malleable codes (NMC)

(Based on recent work with Chabanne, Flori and Patey).
Dziembowski et al. proposed a transposition of the cryptographic definition
of non-malleability to the field of coding theory.

Informally, they define a NMC as a code such that, when a codeword is
subject to modifications, its decoding procedure either
- corrects these errors and decodes to the original message or
- returns a value that is completely unrelated to the original message.
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Bit-wise Independent Tampering

Bit-wise independent tampering is a special case of tampering where each
bit of the codeword is tampered with independently.

Formally a function f : Fn 7→ Fn is bit-wise independent if we can find n
independent functions f1, . . . , fn : F 7→ F such that
∀x ∈ Fn, f(x) = (f1(x), . . . , fn(x)).

There are four possibilities for each fi : keep, flip, 0 and 1,
where 0 (resp. 1) is the function that sets a bit to 0 (resp. 1),
regardless of what it was before.
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Linear coset-coding as NMC

Theorem

Let F ⊂ FnFn
be a family of bit-wise independent tampering functions

such that: ∀f = (f1, . . . , fn) ∈ F , |{i|fi = 0 or fi = 1}| ≥ D.
Let C be a [n, k, d]-linear code such that D > n− d⊥, where d⊥ is the
minimal distance of its dual code C⊥.
Then a linear coset-coding using C is non-malleable w.r.t. F .
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Generalized hashing

For a parameter t ≥ 2 a code C is called t-hashing if
for any t distinct codewords x1, . . . , xt ∈ C
there is a coordinate 1 ≤ i ≤ n such that all values xji , 1 ≤ j ≤ t are
distinct.

The concept of a hashing family is most central in Computer Science and
Coding Theory.
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(t, u)-hashing

Definition

Let 2 ≤ t < u be integers.
A subset C ⊂ Qn is (t, u)-hashing if
for any two subsets T,U of C such that T ⊂ U , |T | = t, |U | = u,
there is some coordinate i ∈ {1, . . . , n} such that
for any x ∈ T and any y ∈ U, y 6= x, we have xi 6= yi.

The concept of (t, u)-hashing generalizes the standard notion of hashing.

Indeed, when u = t+ 1, a (t, u)-hashing family is (t+ 1)-hashing.
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Parent-identifying codes

Let C be an (n,M)-code. Suppose X ⊆ C. For any coordinate i define
the projection

Pi(X) =
⋃
x∈X
{xi}.

Define the envelope e(X) of X by:

e(X) = {x ∈ Qn : ∀i, xi ∈ Pi(X)}.

Elements of the envelope e(X) will be called descendants of X.

Observe that X ⊆ e(X) for all X, and e(X) = X if |X| = 1.

Given a word s ∈ Qn (a son) which is a descendant of X, we would like to
identify without ambiguity at least one member of X (a parent).
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Parent-identifying codes

Definition
For any s ∈ Qn let Ht(s) be the set of subsets X ⊂ C of size at most t
such that s ∈ e(X). We shall say that C has the identifiable parent
property of order t (or is a t-identifying code, or has the t-IPP, for short) if
for any s ∈ Qn, either Ht(s) = ∅ or⋂

X∈Ht(s)

X 6= ∅.
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Motivation

Barg et al. discovered a connection between (t, u)-hashing and t-IPP.
Specifically, they proved the following:

Lemma

Let u = b(t/2 + 1)2)c. If C is (t, u)-hashing then C is a t-identifying code.

The study of parent identifying codes is motivated by its connection to
digital fingerprinting and schemes against software piracy.
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A lower bound

Theorem

Let u ≥ t+ 1, q = t+ 1 and ε > 0. Infinite sequences of (t, u)-hashing
codes exist for all rates R such that

R+ ε ≤ t!(u− t)u−t

uu(u− 1) ln(t+ 1)
.
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Conclusion

Abstraction: Maximum packings of different objects

Classical: Diff= Distant
More general: c diff {c1, c2, ...}
Examples
(1, t)-separation: For every {c, c1, ...ct} ∈ C,
there exists i ∈ [1, n] s.t. ci /∈ {c1i , ...cti}.
Hashing = (1, 1, ...1)-separation
Applications to tracing traitors, broadcast encryption,...

(w, t)-witness:
For every {c, c1, ...ct} ∈ C, there exists W ⊂ [1, n], |W | = w s.t.
c/W /∈ {c1/W, ...ct/W}.
Application to computational learning theory.

Different ambient spaces: [0, q − 1]n, Sn (the symmetric group),...
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