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List decoding of error-correcting codes

Codewords and unique decoding

o Codewords: Vectors ¢ € X". Code: C = {c1,...,Cn}.

@ Minimum distance, d, is the minimal number of disagreeing
positions between any two codewords.

@ If the number of errors, 7, is less than g then there is at most
one codeword within distance 7 from any received word y.
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List decoding

o If 7> % there might be a “small” list of codewords within
distance 7 from y.

@ The decoder thus get a list of candidate messages.

@ We require the lists to be polynomially bounded in the code
length n.
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List decoding of error-correcting codes

Error-correcting codes and list decoding

log|5| (IC]) -

@ The rate of an error-correcting code is rate R = -

@ The relative number of errors it can correct is denoted by 7.
-
0.8

06 @ Unique decoding:
0 T/n< i(1-R).
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@ Guruswami-Sudan algorithm:

T/n<1—\/ﬁ.
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@ Furthermore: The code must be efficiently list decodable.
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Alphabet is > = Fg and aq,...,a, € Fq are distinct.
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List decoding Reed—Solomon codes

o A list decoder must find f(x) € Fq[x], with deg(f) < k, that
passes through n — 7 of the received points.

@ Interpolate Q(x,y)
through received points,
with multiplicity s.

@ ... of least weighted
degree.

deg,, (x'y/) =i+ (k—1);

° IfT/n<1—\/§then

\/ n Q(x,f(x))=0
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Fast list decoding of Reed—Solomon codes

Translation of the interpolation problem

@ List decoding depends on a fast interpolation algorithm.

e The Fg4[x]-module of interpolation polynomials with
deg, (Q) < ¢, is spanned by

{Es’Es_l(y - R)""?(y - R)sv(y* R)S—Hv"'v(y* R)Z}v

where E(x) = [["_1(x — «;) and R(a;) = y; for 1 <i < n.
@ Introduce matrix £ +1 x £+ 1 matrix A,

[A];; = Coefficient to y' in j-th basis function

@ Then, '
Q(X7y) = Zf:oqi(x)yl € Fq[XayL

is an interpolation polynomial if and only if g = (qo, ..., qe) is
in the Fgy[x]—column span of A.
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Interpolation

@ Fors=2and /=3,

E? —-ER R?> -R3

A_| 0 E 2R 3R?
o0 o0 1 -3R
0 0 0 1

@ The column span of A gives all interpolation polynomials. We
look for short vectors, with respect to weighted degree.

@ Gaussian elimination-style algorithm: Cancel highest terms.
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Algorithm: Gaussian elimination

@ Represent matrix as grid.

@ Represent (i, j)-th entry by
stack of cubes:

deg,, (Aij) =
deg(A;;j) + (k — 1)j.

@ Gaussian elimination.

NANAVAVANAN
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Algorithm: Gaussian elimination

@ Represent matrix as grid.

@ Represent (i, j)-th entry by
stack of cubes:

deg,, (Aij) =
deg(A;;j) + (k — 1)j.

@ Gaussian elimination.

o Continue the process, until
leading coordinates occur in
distinct rows.
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Algorithm: Gaussian elimination

[

Represent matrix as grid.

©

Represent (/,j)-th entry by
stack of cubes:

deg,, (Aij) =
deg(A;;j) + (k — 1)j.

Gaussian elimination.

©

Continue the process, until
leading coordinates occur in
distinct rows.

[

Leads to algorithm requiring
@ (€5n2) F4-multiplications.
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Fast list decoding of Reed—Solomon codes

Algorithm: Divide and conquer

o Extend and generalize idea behind divide and conquer
algorithm by Alekhnovich.

@ Introduce matrix U(A, t) representing the column operations
made when “cutting down" the stack, i.e.

o deg,(A-U(A,t)) <deg,(A)—tor
o A-U(A,t) has all leading coordinates in distinct rows,

where deg,, (A) = ), deg, (Aj).
@ Observation:

U(A, t) = U(A, [t/2]) - U(A', t — d),

where A’ = A-U(A,t/2) and d = deg,, A — deg,, A’
@ Leads to divide and conquer algorithm. Handle base case
U(A, 1) by Gaussian elimination.
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Algorithm: Divide and conquer

@ Subproblems are easy:
U(A, t) = U(m:(A), t).

@ Combining subproblems is
easy:
Entries in U(A, t) have at
most 2t coefficients.

o Leads to algorithm requiring
O (> nlog?(¢n) log log(¢n))

F4-multiplications.
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Comparison and conclusions

@ The divide and conquer algorithm is asymptotically faster
than Gaussian elimination.
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@ The divide and conquer algorithm is asymptotically faster
than Gaussian elimination.
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Comparison and conclusions

@ The divide and conquer algorithm is asymptotically faster
than Gaussian elimination.

s00]
200
00
5001 Gaussian elimination
" soo] @) (€5n2)
300 Divide and conquer
2001 O (£°nlog?(¢n) log log(¢n))
-
63 11023 2047 40}35 8191

@ The algorithm works in a more general setting: list decoding
of certain algebraic geometry codes.
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AG codes

e € asimple Cyp curve, i.e. a nonsingular affine curve given by a
polynomial of the form F(xi,x2) = 0 such that

o The numbers v = degy, F and 0 = degy, F are relatively
prime. _
o Any monomial x{x} in the support of F satisfies vi + dj < 7.

@ A simple C,p-curve has a unique point at infinity denoted by
Ps.

o vp_(Xjx3) = —iv — jé.

@ An AG code from a simple C,p-curve of length n:

C={(f(aa),..., flan)) [ f(x) € L(Poo), vp, () + 11 = 0},

Alphabet is ¥ = F, and a1, ..., a, € €(F,) are distinct affine
points.
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List decoding AG codes

@ A list decoder must find f(x) € Fg[x1, x2]/(F(x1, x2)), with
vp () + p > 0, that passes through n — 7 of the received
points.

e Interpolate Q(x1, x2,y) through received points, with
multiplicity s.

@ ... of least weighted degree.
deg,, (x'x3'y)) = ity + 26 + (k — 1)j
o If 7/n<1—+/R then

Q(x1,x2, f(x1,%)) =0
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Fast list decoding of certain AG codes
Translation of the interpolation problem

@ The Fg[x1,x2]/(F(x1,x2))-module of interpolation
polynomials with deg, (Q) < ¢, is spanned by

(BB =R v = RY = R (v = RY .
o E satisfies

n
= E a; — nPy
i=1

and R(aj) =y; for 1 <i<n.
e Find a generating set of the module viewed as F4[x;] module.
One finds a generating set of cardinality (¢ + 1).

@ Introduce matrix y(¢ + 1) x (¢ + 1) matrix A,

[A] (i) = Coefficient to x5y’ in (i, j')-th basis function



Fast list decoding of certain AG codes

Algorithm: Divide and conquer

o Extend and generalize idea behind divide and conquer
algorithm by Alekhnovich further.



Fast list decoding of certain AG codes

Algorithm: Divide and conquer

o Extend and generalize idea behind divide and conquer
algorithm by Alekhnovich further.

@ Again leads to divide and conquer algorithm.



Fast list decoding of certain AG codes

Algorithm: Divide and conquer

o Extend and generalize idea behind divide and conquer
algorithm by Alekhnovich further.

@ Again leads to divide and conquer algorithm.

@ Leads to algorithm requiring
O (6°4*(n + ~8) log?(¢(n + ~0)) log log(¢(n + 79)))

Fg-multiplications.



Fast list decoding of certain AG codes

Algorithm: Divide and conquer

o Extend and generalize idea behind divide and conquer
algorithm by Alekhnovich further.

@ Again leads to divide and conquer algorithm.

@ Leads to algorithm requiring
O (6°4*(n + ~8) log?(¢(n + ~0)) log log(¢(n + 79)))

Fg-multiplications.

@ For the well-known Hermitian curve one can list-decode
one-point AG codes in

O (£°n® log?(¢n) log log(¢n))

[Fgo-multiplications. Note that in thiscase v =q, 6 =g +1

and n = ¢3.
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The key equation for RS codes.

@ Sudan's algorithm for ¢ = 1: find

Q(x,y) = q1(x)y + qo(x)

such that Q(«;,y;) = 0.
@ Leads to a (Gao) key equation

q1(x)R(x) = —qo(x) mod E(x),
@ Which implies the standard key equation
AX)S(X) = Q(x) mod x"X,.

e Solving the key equation: use EEA on S(x) and x"~X. Finds
A(x) and Q(x) if 2r < n—k + 1.
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The Wu list decoder.

@ The Wu list decoder focuses on finding all relevant pairs
(A(x),Q(x)) if 2r > n—k + 1.

o Idea: working in the Fg[x]-module generated by y — S(x) and
x"~k we have

Q(x) = A(x)y = A(x)hi(x, y) + R(x)h2(x, y).
@ hi(x,y) and ha(x,y) are the output of (essentially) EEA on
y — S(x) and x"k.

e fi(x) and f(x) are unknown polynomials, but upper bounds
on their degrees are known.
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The Wu list decoder.

As before: Q(x) — A(x)y = fi(x)h(x,y) + fa(x)h2(x, y).

@ For error positions x = o we can determine the ratio between
fi(a) and f(«).

e fi(x) and fa(x) can be determined solving a rational
interpolation problem (if 7 is not too big).

e Wu's list decoder can correct (generalized) Reed—Solomon
codes up to 7 < n— y/n(n — d) errors.

@ Work in progress: apply Wu's list decoder to other classes of
codes.



Thank you for your attention!
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